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Lecture  

 Discrete-Time  

Signals and Systems 
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1. Discrete-Time Signals and Systems 

• signal classification -> signals to be applied in digital filter 

theory within our course, 

• some elementary discrete-time signals, 

• discrete-time systems: definition, basic properties review, 

discrete-time system classification, input-output model of 

discrete-time systems -> system to be applied in digital filter 

theory within our course, 

• Linear discrete-time time-invariant system description in 

time-, frequency- and transform-domain. 
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1.1. Basic Definitions  
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1.1.1. Discrete and Digital Signals  

1.1.1.1. Basic Definitions 

 
Signals may be classified into four categories depending 

on the characteristics of the time-variable and values 

they can take:  

• continuous-time signals (analogue signals), 
• discrete-time signals, 

• continuous-valued signals, 

• discrete-valued signals. 
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Continuous-time (analogue) signals: 
 

Time:            defined for every value of time         ,  

Descriptions: functions of a continuous variable t:       , 

Notes:            they take on values in the continuous                      

  interval                                              .                           

( )f t

( ) ( , ) ,f t a b for a b  

t R

Note: ( )

( )

( , ) ( , )

,

f t C

f t j

a b and a b

a b

 

 



 

   

 



6 

Discrete-time signals: 

 

Time: defined only at discrete values of time:          , 

Descriptions: sequences of  real or complex 

 numbers                        ,  

Note A.: they take on values in the continuous 

 interval                                             , 

    Note B.: sampling of analogue signals: 

• sampling interval, period:    ,    

• sampling rate: number of samples per 

second, 

• sampling frequency (Hz):                .                   

  

( ) ( )f nT f n

T

1/Sf T

( ) ( , ) ,f n a b for a b  

t nT
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Continuous-valued signals: 

 

Time: they are defined for every value of time or  

            only at discrete values of time,  

Value: they can take on all possible values on 

finite or infinite range, 

Descriptions: functions of a continuous variable 

or sequences of numbers.      
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Discrete-valued signals: 

 

Time: they are defined for every value of time or             

only at discrete values of time, 

Value: they can take on values from a finite set of 

possible values, 

Descriptions: functions of a continuous variable or 

sequences of numbers. 
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Digital filter theory: 

Digital signals: 

Definition and descriptions: discrete-time and 

discrete-valued signals (i.e. discrete -time 

signals taking on values from a finite set of 

possible values), 

Note:  sampling, quatizing and coding  process i.e. 

process of analogue-to-digital conversion. 

Discrete-time signals: 

Definition and descriptions: defined only at discrete 

values of time and they can take all possible 

values on finite or infinite range (sequences of 

real or complex numbers:         ), 

Note:  sampling process, constant sampling period. 

( )f n
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1.1.1.2. Discrete-Time Signal Representations 

A. Functional representation: 

1 1,3

( ) 6 0,7

0

for n

x n for n

elsewhere




 



0 0

( ) 0,6 0,1, ,102

1 102

n

for n

y n for n

n




 
 

B. Graphical 

representation 
( )x n

n



11 

D. Sequence representation: 

 ( ) 0.12 2.01 1.78 5.23 0.12x n 

n … -2 -1 0 1 2 

x(n) … 0.12 2.01 1.78 5.23 0.12 

C. Tabular representation: 
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1.1.1.3. Elementary Discrete-Time Signals 

A. Unit sample sequence (unit sample, unit impulse, 

unit impulse signal) 

 
1 0

( )
0 0

for n
n

for n



 



( )n

n
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B. Unit step signal (unit step, Heaviside step sequence) 

1 0
( )

0 0

for n
u n

for n


 



n

( )u n
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C. Complex-valued exponential signal 

 
2 .

( ) , ( ) 1, arg ( ) 2 .j nT

S

f n
x n e x n x n nT f nT

f

 
     

where 

, , 1R n N j is imaginary unit   

and 

T is sampling period and        is sampling frequency. Sf

(complex sinusoidal sequence, complex phasor) 
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1.1.2. Discrete-Time Systems. Definition 

 A discrete-time system is a device or algorithm that 

operates on a discrete-time signal called the input or 

excitation (e.g. x(n)), according to some rule (e.g. H[.]) 

to produce another discrete-time signal called the output 

or response (e.g. y(n)). 

 ( ) ( )y n H x n

This expression denotes also the transformation H[.]        

(also called operator or mapping) or processing 

performed by the system on x(n) to produce y(n).  
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( )x n

input signal 

excitation 

( )y n

output signal 

response 

( ) ( )Hx n y n

 ( ) ( )y n H x n

 .H

discrete-time 

system 

Input-Output Model of Discrete-Time System 

(input-output relationship description) 
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1.1.3. Classification of Discrete-Time 

 Systems  

1.1.3.1. Static vs. Dynamic Systems. Definition  

A discrete-time system is called static or memoryless if its output 

at any time instant n depends on the input sample at the same time, 

but not on the past or future samples of the input. In the other case, 

the system is said to be dynamic or to have memory.  

If the output of a system at time n is completly determined by the 

input samples in the interval from n-N to n (            ), the system is 

said to have memory of duration N. 

If             , the system is static or memoryless.  

If                    , the system is said to have finite memory. 

If                , the system is said to have infinite memory. 

0N 

0N 

0 N  

N 
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Examples: 

The static (memoryless) systems:  

  

 

The dynamic systems with finite memory: 

  

  

  

The dynamic system with infinite memory: 

  

 

3( ) ( ) ( )y n nx n bx n 

0

( ) ( ) ( )
N

k

y n h k x n k


 

0

( ) ( ) ( )
k

y n h k x n k




 
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1.1.3.2. Time-Invariant vs. Time-Variable Systems. 

 Definition  

A discrete-time system is called time-invariant if its input-output 

characteristics do not change with time. In the other case, the 

system is called time-variable.  

Definition. A relaxed system           is time- or shift-invariant if 

only if  

  

implies that  

  

for every input signal          and every time shift k . 

 

[.]H

( ) ( )Hx n y n

( ) ( )Hx n k y n k  

( )x n

 ( ) ( )y n H x n

 ( ) ( )y n k H x n k  
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Examples: 

The time-invariant systems:  

  

  

 

 

The time-variable systems:  

  

  

 

3( ) ( ) ( )y n x n bx n 

0

( ) ( ) ( )
N

k

y n h k x n k


 

3( ) ( ) ( 1)y n nx n bx n  

0

( ) ( ) ( )
N

N n

k

y n h k x n k



 
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1.1.3.3. Linear vs. Non-linear Systems. Definition  

A discrete-time system is called linear if only if it satisfies the linear 

superposition principle. In the other case, the system is called non-

linear.  

 Definition. A relaxed system           is linear if only if 

  
 

for any arbitrary input sequences            and           , and any 

arbitrary constants      and     . 

 

[.]H

     1 1 2 2 1 1 2 2( ) ( ) ( ) ( )H a x n a x n a H x n a H x n  

1( )x n
2( )x n

1a 2a
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Examples: 

The linear systems:  

  

  

 

The non-linear systems:  

  

  

 

0

( ) ( ) ( )
N

k

y n h k x n k


 
2( ) ( ) ( )y n x n bx n k  

3( ) ( ) ( 1)y n nx n bx n  
0

( ) ( ) ( ) ( 1)
N

k

y n h k x n k x n k


   
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1.1.3.4. Causal vs. Non-causal Systems. Definition  

Definition. A system is said to be causal if the output of the system 

at any time n (i.e.,  y(n)) depends only on present and past inputs 

(i.e., x(n), x(n-1), x(n-2), … ). In mathematical terms, the output of a 

causal system satisfies an equation of the form 

 

  

where           is some arbitrary function. If a system does not satisfy 

this definition, it is called non-causal. 

 ( ) ( ), ( 1), ( 2),y n F x n x n x n  

[.]F
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Examples: 

The causal system:  

  

  

 

The non-causal system:  

  

  

 

0

( ) ( ) ( )
N

k

y n h k x n k


 
2( ) ( ) ( )y n x n bx n k  

3( ) ( 1) ( 1)y n nx n bx n   
10

10

( ) ( ) ( )
k

y n h k x n k


 
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1.1.3.5. Stable vs. Unstable of Systems. Definitions  

An arbitrary relaxed system is said to be bounded input - bounded 

output (BIBO) stable if and only if every bounded input produces 

the bounded output. It means, that there exist some finite numbers 

say         and        , such that  

  

  

for all n. If for some bounded input sequence x(n) , the output y(n)  

is unbounded (infinite), the system is classified as unstable.  

xM yM

( ) ( )x yx n M y n M      
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Examples:  

The stable systems:  

 

  

  

The unstable system:  

  

  

  

 

0

( ) ( ) ( )
N

k

y n h k x n k


 
2( ) ( ) 3 ( )y n x n x n k  

3( ) 3 ( 1)ny n x n 
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1.1.3.6. Recursive vs. Non-recursive Systems. 

Definitions  

A system whose output y(n) at time n depends on any number of the 

past outputs values ( e.g. y(n-1), y(n-2), … ), is called a recursive 

system. Then, the output of a causal recursive system can be 

expressed in general as  

  

 

where F[.] is some arbitrary function. In contrast, if  y(n) at time n 

depends only on the present and past inputs  

 

  

then such a system is called nonrecursive.  

 ( ) ( 1), ( 2), , ( ), ( ), ( 1), , ( )y n F y n y n y n N x n x n x n M     

 ( ) ( ), ( 1), , ( )y n F x n x n x n M  
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Examples:  

The nonrecursive system:  

  

  

 

The recursive system:  

  

 

0

( ) ( ) ( )
N

k

y n h k x n k


 

0 1

( ) ( ) ( ) ( ) ( )
N N

k k

y n b k x n k a k y n k
 

    
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1.2. Linear-Discrete Time Time-Invariant 

       Systems (LTI Systems)  

1.2.1. Time-Domain Representation  
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 .H

LTI system 

unit impulse 

( )n  ( ) ( )h n H n

impulse response 

LTI system description by convolution (convolution sum): 

 

 

 

Viewed mathematically, the convolution operation satisfies the 

commutative law. 

( ) ( ) ( ) ( ) ( ) ( )* ( ) ( )* ( )
k k

y n h k x n k x k h n k h n x n x n h n
 

 

      

1.2.1.1 Impulse Response and Convolution 
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1.2.1.2. Step Response  

 .H
unit step 

( )u n

step response 

unit-step 

response  

 ( ) ( )g n H u n

( ) ( ) ( ) ( )
n

k k

g n h k u n k h k


 

   

These expressions relate the impulse response to the step response 

of the system.  

 

LTI system 
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1.2.2. Impulse Response Property and 

 Classification of LTI Systems 

1.2.2.1. Causal LTI Systems 

A relaxed LTI system is causal if and only if its impulse response is 

zero for negative values of n , i.e.  

  

  

Then, the two equivalent forms of the convolution formula can be 

obtained for the causal LTI system:  

( ) 0 0h n for n 

0

( ) ( ) ( ) ( ) ( )
n

k k

y n h k x n k x k h n k


 

    
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1.2.2.2. Stable LTI Systems 

 A LTI system is stable if its impulse response is absolutely 

summable, i.e.  

  

  

2
( )

k

h k




 



34 

1.2.2.3. Finite Impulse Response (FIR) LTI Systems 

 and Infinite Impulse Response (IIR) LTI 

 Systems 

  

Causal FIR LTI systems:  

 

IIR LTI systems:  

  

 

0

( ) ( ) ( )
N

k

y n h k x n k


 

0

( ) ( ) ( )
k

y n h k x n k




 
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1.2.2.4. Recursive and Nonrecursive LTI Systems  

 

Causal nonrecursive LTI:  

 

Causal recursive LTI:  

  

 

LTI systems:  

characterized by constant-coefficient difference equations  

0

( ) ( ) ( )
N

k

y n h k x n k


 

0 1

( ) ( ) ( ) ( ) ( )
N M

k k

y n b k x n k a k y n k
 

    
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1.3. Frequency-Domain Representation of 

 Discrete Signals and LTI Systems 

LTI system 

( )h ncomplex-valued 

exponencial 

signal  

( ) j nx n e 

impulse response 

( ) ( ) ( )
k

y n h k x n k




 

LTI system output  

( )y n
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LTI system output:  

( )( ) ( ) ( ) ( )

( ) ( )

j n k

k k

j k j n j n j k

k k

y n h k x n k h k e

h k e e e h k e



   

 


 

 
 

 

   

 

 

 

( ) ( )j n jy n e H e 

Frequency response:  ( ) ( )j j k

k

H e h k e 






 
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( )( ) ( )j j jH e H e e   

( ) Re ( ) Im ( )j j jH e H e j H e         

( ) ( )cos ( )sinj

k k

H e h k k j h k k  
 

 

 
   

 
 

Re ( ) ( )cosj

k

H e h k k 




    

Im ( ) ( )sinj

k

H e h k k 




     
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Magnitude response:  

2 2

( ) Re ( ) Im ( )j j jH e H e H e         

Im ( )
( ) arg ( )

Re ( )

j

j

j

H e
H e arctg

H e






 

        

Phase response:  

( )
( )

d

d

 
 


 

Group delay function: 
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1.3.1. Comments on relationship between the impulse 

 response and frequency response 

The important property of the frequency response 

  

  

is fact that this function is periodic with period       .  2

   2 2
( ) ( ) ( ) ( )

j l j lj j k

k k

H e h k e h k e H e
    

 
  

 

   

( )jH e 

( )jH e 

1
( ) ( )

2

j j nh n H e e d


 








 

In fact, we may view the previous expression as the exponential 

Fourier series expansion for                , with h(k) as the Fourier series 

coefficients. Consequently, the unit impulse response h(k) is related 

to                through the integral expression 
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1.3.2. Comments on symmetry properties 

For LTI systems with real-valued impulse response, the magnitude 

response, phase responses, the real component of and the imaginary 

component of                 possess these symmetry properties: 
 

The real component: even function of      periodic with period   

 

 

The imaginary component: odd function of        periodic with period  

( )jH e 





2

2

Re ( ) Re ( )j jH e H e       

Im ( ) Im ( )j jH e H e        
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The magnitude response: even function of      periodic with period  

 

 

The phase response: odd function of       periodic with period   

 2

( ) ( )j jH e H e 

 2

arg ( ) arg ( )j jH e H e        

Consequence: 

If we known                  and           for                     ,  we can describe 

these functions ( i.e. also                 ) for all values of      . 

( )jH e  ( )  0   
( )jH e  
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( )jH e 



 24 3 2 3 4



 24 3 2 3 4

Symmetry Properties  

( ) 

EVEN 

ODD 

0

0
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1.3.3. Comments on Fourier Transform of Discrete Signals 

 and Frequency-Domain Description of LTI Systems 

LTI system 

( )h n

impulse response 

( )jH e 

frequency  response 

input signal  

( ), ( )jx n X e 

output signal  

( ), ( )jy n Y e 
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The input signal x(n) and the spectrum of x(n): 

( ) ( )j j k

k

X e x k e 






 
1

( ) ( )
2

j j nx n X e e d


 








 

( ) ( )j j k

k

Y e y k e 






 
1

( ) ( )
2

j j ny n Y e e d


 








 

The output signal y(n) and the spectrum of y(n): 

( ) ( )j j k

k

H e h k e 






 
1

( ) ( )
2

j j nh n H e e d


 








 

The impulse response h(n) and the spectrum of h(n):  

Frequency-domain description of LTI system: 

( ) ( ) ( )j j jY e H e X e  
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1.3.4. Comments on Normalized Frequency 

It is often desirable to express the frequency response of an LTI 

system in terms of units of frequency that involve sampling 

interval T. In this case, the expressions:  

( ) ( )j j k

k

H e h k e 






 
1

( ) ( )
2

j j nh n H e e d


 








 

are modified to the form: 

  
( ) ( )j T j kT

k

H e h kT e 






 

/

/

( ) ( )
2

T

j T j nT

T

T
h nT H e e d


 








 
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                 is periodic with period                          , where        is 

sampling frequency. 

 Solution: normalized frequency approach: 

( )j TH e 
2 / 2T F  F

/ 2F 

/ 2 50F kHz 50kHz 

3

1 3

20 10 2
0.4

50 10 5

x

x


    

3

2 3

25 10
0.5

50 10 2

x

x


    

100F kHz

1 20f kHz

2 25f kHz

Example:  
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1.4. Transform-Domain Representation of 

Discrete Signals and LTI Systems 
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1.4.1. Z -Transform 

Since Z – transform is an infinite power series, it exists 

only for those values of  z for which this series converges. 

The region of convergence of  X(z) is the set of all values 

of z for which X(z) attains a finite value. 

Definition: The Z – transform of a discrete-time signal x(n)        

is defined as the power series: 

( ) ( ) k

k

X z x n z






  ( ) [ ( )]X z Z x n

where z is a complex variable. The above given relations  

are sometimes called the direct Z - transform because 

they transform the time-domain signal x(n) into its 

complex-plane representation X(z).  
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The procedure for transforming from z – domain to the 

time-domain is called the inverse Z – transform. It can 

be shown that the inverse Z – transform is given by 

11
( ) ( )

2

n

C

x n X z z dz
j

   1( ) ( )x n Z X z

where C denotes the closed contour in the region of 

convergence of  X(z) that encircles the origin. 
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1.4.2. Transfer Function  

0 1

( ) ( ) ( ) ( ) ( )
N M

k k

y n b k x n k a k y n k
 

    

Application of the Z-transform to this equation under 

zero initial conditions leads to the notion of a transfer 

function.   

The LTI system can be described by means of a constant 

coefficient linear difference equation as follows 
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LTI System 

 ( ) ( )Y z Z y n

input signal 

( )x n

 ( ) ( )X z Z x n

Transfer function: the ratio of the Z - transform of the 

output signal and the Z - transform of the input signal of 

the LTI system: 
( ) [ ( )]

( )
( ) [ ( )]

Y z Z y n
H z

X z Z x n
 

output signal 

( )y n

( )H z

 ( ) ( )H z Z h n

( )h n
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LTI system: the Z-transform of the constant coefficient          

linear difference equation under zero initial 

conditions:  

0 1

( ) ( ) ( ) ( ) ( )
N M

k k

k k

Y z b k z X z a k z Y z 

 

  

The transfer function of the LTI system: 

0

1

( )
( )

( )
( )

1 ( )

N
k

k

M
k

k

b k z
Y z

H z
X z

a k z









 







0 1

( ) ( ) ( ) ( ) ( )
N M

k k

y n b k x n k a k y n k
 

    

H(z): may be viewed as a rational function of a complex 

variable z (z-1).  
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1.4.3. Poles, Zeros, Pole-Zero Plot 

Let us assume that  H(z) has been expressed in its 

irreducible or so-called factorized form: 

00 1

0

1 1

( )( )

( )

1 ( ) ( )

NN
k

k
N Mk k

M M
k

k

k k

z zb k z
b

H z z
a

a k z z p



 



 



 

 

 

 

Pole-zero plot: the plot of the zeros and the poles of H(z) 

in the z-plane represents a strong tool for LTI system 

description. 

Zeros of H(z): the set  {zk} of z-plane for which H(zk)=0 

Poles of H(z): the set  {pk} of  z -plane for which ( )kH p 



55 

Example: the 4-th order Butterworth low-pass filter,                  

cut off frequency               . 
1 3

 

0

1

( )

( )

1 ( )

N
k

k

M
k

k

b k z

H z

a k z

















z1= -1.0002, z2= -1.0000 + 0.0002j  

z3= -1.0000 - 0.0002j, z4= -0.9998     
0

1

( )

( )

1 ( )

N
k

k

M
k

k

b k z

H z

a k z

















b =[ 0.0186    0.0743    0.1114    0.0743    0.0186 ] 

a =[ 1.0000   -1.5704   1.2756   -0.4844    0.0762 ] 

p1= 0.4488 + 0.5707j, p2= 0.4488 - 0.5707j 

p3= 0.3364 + 0.1772j, p4= 0.3364 - 0.1772j 
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Magnitude Response: Linear Scale  

Phase Response  

( )jH e 

( ) 







57 

Magnitude Response: Logarithmic Scale (dB) 

Group Delay Function  

20log ( )jH e 





( ) 
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Pole-Zero 

Plot  

Unit Circle 

Poles 
Zeros 
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Pole-Zero Plot: 

Zeros   
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1.4.4. Transfer Function and Stability of LTI Systems 

Condition: LTI system is BIBO stable if and only if  the 

unit circle falls within the region of convergence of the 

power series expansion for its transfer function. In the 

case when the transfer function characterizes a causal LTI 

system, the stability condition is equivalent to the 

requirement that the transfer function H(z) has all of its 

poles inside the unit circle. 
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Example 1: stable system  

Example 2: unstable system  

2

1 2

1 0.16
( )

1 1.1 1.21

z
H z

z z



 




 

1 1 1

2 2 2

0.4 0.5500 0.9526 1.1 1

0.4 0.5500 0.9526 1.1 1

z p j p

z p j p

    

     

1 2

1 2

1 0.9 0.18
( )

1 0.8 0.64

z z
H z

z z

 

 

 


 

1 1 1

2 2 2

0.3 0.4000 0.6928 0.8 1

0.6 0.4000 0.6928 0.8 1

z p j p

z p j p

    

    
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Z – Domain: 

0

1

( )

( )

1 ( )

N
k

k

M
k

k

b k z

H z

a k z

















transfer function   

Frequency – Domain: 

0

1

( )

( )

1 ( )

N
j k

j k

M
j k

k

b k e

H e

a k e























frequency response   

Time – Domain: 

0 1

( ) ( ) ( ) ( ) ( )
N M

k k

y n b k x n k a k y n k
 

    

constant coefficient linear difference equation  

1.4.5. LTI System Description. Summary 

j jz e e z  

h(n) 

Z 

Z-1 FT-1 

FT 
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( )H zZ – Domain: transfer function   

    jw

j

z e
H zH e 




11
)( ) (

2

n

C

H zh n z dz
j

 

( )h kTime – Domain: impulse response 

( ) ( )j j k

k

H e eh k 






  )( () k

k

H z zh k






 

Frequency – Domain: frequency response   

 ( )
j

j

e z
eH z H






 (

2
)) (

1 j kjH deh k e











 

 jH e 


